Building Lizzie – IV


Another post about Lizzie. I started off with a Raspberry Pi 3 to build a personal assistant for my car and I have come a long way both in terms of the concept and the functionality. Most importantly I have formalized the application flow and also extended the scope from one device to almost all the devices that can communicate digitally (for now) but later would try to bring everything electronic under project Lizzie.

Recently at the Build 2017 event Microsoft unveiled some pretty cools stuff and I am using Windows 10 IoT core for my Raspberry Pi 3 so a lot of things are going to come handy (for example the better speech recognition capabilities that they are building for Cortana – Although Lizzie is going to be far more smart than Cortana, the speech capabilities on the Windows platform are going to make my life easier).

Here is a video from today with the continuous speech and command execution:

Now coming back to the expansion of scope – Instead of trying to create a private network of devices I am going to use something like the Google Pub/Sub platform or Microsoft’s Azure IoT hub (whichever offers more features – irrespective of the cost). So I would have devices that would advertise themselves whenever they come online, subscribe to various streaming data queues and act based on their capabilities and request coming to them – for instance My phone can make calls so I can place a message for call from Lizzie running on my computer at home or from Lizzie running on the Raspberry Pi on my car. The interface would be simple capability based services running on multiple devices.

I did a lot of code refactoring last night while bringing all the distinct modules together, most of the stuff is running asynchronously so a lot state needs to be synchronized and some of the things are not very stable right now but it works. I have order some sensors and electronic components (I used a couple of LEDs today) – I have a Thermistor (a special resistor which changes resistance based on temperature) which I would put on a custom circuit so that Lizzie running on Raspberry Pi in my car can start/stop or change the air conditioning in the vehicle (using a custom circuit mounted with an Arduino that I would hook up in the car A/C system), another component is a light sensing resistor that I would use to control the Cabin lights – when the ignition is On and the car is not moving I would use the light sensor to calculate the intensity of light and illuminate the cabin lights if it is low. All these ideas would also come in handy for another version of Lizzie (I would order another Raspberry Pi to install at my home – to make it a smart home). All these would be able to connect together to create a smart ecosystem of devices and services running together to create intelligence to do jobs that can be automated.

So far it’s been a great experience in terms of learning and because this is relatively new area there isn’t much knowledge floating around for you to look up and hence you need to experiment a lot and combine a lot of abstract knowledge from multiple disciplines.

Thanks a lot for coming along and having a look, have a great day, see you soon.

Until then…

Other posts

  • Object Extraction using Image Segmentation: A Comprehensive Tutorial with Detectron2 and Mask2Former

    Object Extraction using Image Segmentation: A Comprehensive Tutorial with Detectron2 and Mask2Former

    Discover how to perform object extraction using image segmentation with Detectron2 and Mask2Former in our step-by-step tutorial. Learn to set up the environment, configure the model, and visualize segmentation results, extracting objects from images with ease. Boost your computer vision skills and optimize your image processing projects with this comprehensive guide.

  • Building Your First Neural Network with TensorFlow – Deep Learning 2

    Building Your First Neural Network with TensorFlow – Deep Learning 2

    Neural networks are a fundamental concept in deep learning and are used for a wide range of applications such as image and speech recognition, natural language processing, and much more. In this article, we will walk you through the process of building your first neural network using TensorFlow, a popular open-source machine learning library. We'll…

  • Introduction to Deep Learning with TensorFlow – Deep Learning 1

    Introduction to Deep Learning with TensorFlow – Deep Learning 1

    In this article, we provide an introduction to deep learning with TensorFlow. We cover what deep learning is, what it can do, why TensorFlow is a great choice for deep learning, and an overview of TensorFlow itself. We also explore the different types of neural networks used in deep learning, and demonstrate how to build…

  • How To: Set Up PyTorch with GPU Support on Windows 11 – A Comprehensive Guide

    How To: Set Up PyTorch with GPU Support on Windows 11 – A Comprehensive Guide

    Introduction Hello tech enthusiasts! Pradeep here, your trusted source for all things related to machine learning, deep learning, and Python. As you know, I’ve previously covered setting up TensorFlow on Windows. Today, I’m excited to bring you a detailed guide on setting up another popular deep learning framework, PyTorch, with GPU support on Windows 11.…

  • Solving a Complex Logistics Optimization Problem using the Pulp Library in Python – Part 4

    Solving a Complex Logistics Optimization Problem using the Pulp Library in Python – Part 4

    In this article, we demonstrate how to solve a logistics optimization problem using the Pulp library in Python. By defining the variables, objective function, and constraints, and using the solve method to find the optimal solution, we are able to minimize the total cost of transportation while satisfying the constraints. This article concludes the multi-part…

  • Linear Programming in Python using PuLP โ€“ Part 3: Optimizing Investment Portfolios with Multi-Objective Optimization

    Linear Programming in Python using PuLP โ€“ Part 3: Optimizing Investment Portfolios with Multi-Objective Optimization

    In this article, we used the Pulp library in Python to solve a linear programming problem to find the optimal investment portfolio. We defined variables, added constraints, defined objectives, and solved the problem to find the optimal solution that balances the trade-off between maximizing returns and minimizing risk. The code was concise and easy to…

  • Linear Programming in Python using Pulp – Part 2

    Linear Programming in Python using Pulp – Part 2

    In this article, we delve deeper into linear programming and explore how to solve a multi-objective optimization problem using the Pulp library in Python. We present a problem in which a nutritionist must find the optimal meal plan for a patient suffering from anemia, balancing the intake of Vitamin B12 and fat. We demonstrate how…

  • Linear Programming in Python using PuLP – Part 1

    Linear Programming in Python using PuLP – Part 1

    Linear programming is an optimization technique used to find the best outcomes for a given problem. This technique relies on a set of constructs which are all expressed using a system of linear equations. It is important to understand that you should be able to express your objective as a linear equation dependent on an…

  • How To: Setup Tensorflow With GPU Support using Docker

    How To: Setup Tensorflow With GPU Support using Docker

    Previously I published a guide for setting up tensorflow in an anconda environment with GPU support. A lot of people liked it and I have been working with this environment myself for more than a year now. I am happy with the results however the process is a bit involved and requires quite a bit…

  • How To: Setup Tensorflow With GPU Support in Windows 11

    How To: Setup Tensorflow With GPU Support in Windows 11

    It's been just 2 days since Windows 11 came out and I am already setting up my system for the ultimate machine learning environment. Today we are going to setup a new anaconda environment with tensorflow 2.5 with GPU support using NVIDIA CUDA 11.4 and CUDNN 8.2.4 along with Python 3.8. This is going to…

  • Tools of The Trade – II

    Tools of The Trade – II

    In continuation of my previous post today I will talk about the website tanooja.com. I did this project on request of my wife because she wanted to pursue blogging and didn't want to go through the ordeal needed to write, publish and manage SEO using most of the prominent blogging platforms like WordPress, Joomla, Drupal…

  • Tools of The Trade – I

    Tools of The Trade – I

    In this post I will share a few tools and technologies that I am using to run a couple of blazing fast websites using latest modern tools and technologies. The caveat here is that I don't pay any infrastructure/hosting costs for any of these websites and they can scale infinitely in terms of supported users…

  • Building Lizzie – IV

    Building Lizzie – IV

    Another post about Lizzie. I started off with a Raspberry Pi 3 to build a personal assistant for my car and I have come a long way both in terms of the concept and the functionality. Most importantly I have formalized the application flow and also extended the scope from one device to almost all…

  • OBD-II with Raspberry Pi3

    OBD-II with Raspberry Pi3

    I am writing this article in response to a question posted on my YouTube channel. Here I would be talking about communicating to an OBD-II device (ELM327 chip with Bluetooth) hooked into your car’s OBD-II port. The OS I am using is Windows 10 IoT core. This information is important because it makes a difference…

  • Building Lizzie – III

    Building Lizzie – III

    As mentioned in previous article today I would be talking about OBD-II integration in Lizzie using a Bluetooth serial communication with an ELM327 adapter that fits on a OBD-II port in your car. OBD stands for On Board Diagnostics which is connected to the ECU (Engine Control Unit) and provides a ton of information (both…

  • Building Lizzie – II

    Building Lizzie – II

    In the previous post I described my experiments around building an intelligent artificial personal assistant – Lizzie. The pseudo intelligent agents available today around us (Siri, Cortana or Google Next) are all great feats of engineering given the fact that they reside on small devices like mobile phones and are able to do powerful things…

  • Building Lizzie – I

    Building Lizzie – I

    Recently I have been busy building a personal assistant that I would be fitting in my car. Currently I am in experimentation mode and I am experimenting with speech capabilities. I would start with a description of my journey so far. First let me show off a little bit with these videos that I created…

  • How To: Super Fast Tensorflow 2 Setup with GPU Support in VS Code

    I am publishing this article in response to a comment I received on How To: Setup Tensorflow With GPU Support using Docker article. Docker is all good and nice but all of us agree that we use IDEs (integrated dev environment – think VSCode) on our machines. So let’s say you want to get the…

%d bloggers like this: